Jump to content

4 tłoki kontra 2 tłoki na tarczy 294mm


kropkowicz

Recommended Posts

Czy są zalety przejścia na zacisk czterotłoczkowy bez zmiany rozmiaru tarczy?

 

Pytanie dodatkowe czy klocki pasujące do zacisku 4 tłoczkowego zostawiają taki sam ślad na tarczy czy z wymianą wiąże się wymiana/toczenie tarczy?

Link to comment
Share on other sites

Tak jak już rozmawialiśmy, w codziennej jeździe zauważyłem poprawę, ale bez szału. Nie wiem, jak przy upalaniu - nie upalam bujającym się forkiem-kanapowozem :)

 

Być może ktoś ma doświadczenie, jak to jest przy zagrzewaniu się hebelków przy upalaniu.

 

Co do klocków i zostawiania śladu, możesz oblukać moje tarcze i klocki z zestawu dwutłoczkowego, i porównać z założonym czterotłoczkiem... zapraszam do garażu :)

Link to comment
Share on other sites

Jeżeli masz niewiele zużytą tarczę, bez widocznego progu, większy klocek od 4 tłoczków się dopasuje, ułoży, natomiast jeżeli tarcza jest widocznie podjechana, leczy Cię toczenie albo wymiana, bo będzie Ci hamował tylko tym niezużytym paskiem....albo w skrajnym przypadku klocek się skantuje i stanie na dębowo w zacisku...

Link to comment
Share on other sites

dzięki za ostrzeżenie

możesz coś powiedzieć o sensowności takiego przeszczepu?

 

Jasne, że większe i lepsze hamulece zawsze mogą się przydać...na pweno nie zaszkodzą, kwestia potrzeb i gustów....jak kogoś stać...aczkolwiek ja osobiście nie szaleję z hamulcami, mnie forumowa psychoza i wyścig zbrojeń raczej nie dotyczą :mrgreen: ...wyrzuciłem Prodrivoskie Alcony z STI, bo graty były za drogie, nie zapłacę kilku tysięcy pln za dwie tarcze i cztery klocki, nie jestem ani krezusem, ani nie mam ciśnienia, żeby zza felgi wystawało coś superkawiorowego.... :lol: , potem wyrzuciłem złote Brembulce z przodu i założyłem czterotłoczki, bo wchodzi na nie koło 16" :) , a na zimówkach 225/45/17 z kolcami było mi za twardo.... :) , ale na pewno jak kiedyś będę chciał się ścigać w jakimś 24h Le Skiroławki albo będę się wybierał w Alpy, na 30 kilometrowe zjazdy serpentynami, założe znowu złote, piękne Brembo... :) a w pojeżdżafffkowym GTku mam 2 tłoczkowe hamowniki, w zupełności mi stykają, a miałem nawet raz pomysła, żeby zapodać jeden tłoczek.... :) na który wchodzą koła 14" .... :)

moim zdaniem, ważniejsza jest sprawność zacisku, swoboda jego działania, stan i jakość tarcz i klocków, niż rozmiar i ilość tłoczków, ale powtarzam - to tylko moja subiektywna ocena...

Link to comment
Share on other sites

dzięki

 

sprawdziłem już, że klocek wrx bierze tarczę na mniejszej rozpiętości promienia (hehe ale konstrukcja słowno-muzyczna)

okazało się również, że moje klocki i tarcze są dalekie od zużycia także zacisk wrx sobie poczeka

Link to comment
Share on other sites

moje poprzednie auta z zaciskiem jednotłoczkowym dużo lepiej hamowały albo "brutalniej" brały. Na foresterowskie tez nie narzekam odkąd mam pirelli. Po zalaniu motula rbf660 to szybciej klocki się palą niż płyn się gotuje, ale wymiana minimum raz na rok.

 

wg wyliczeń z foreter org 2 tłoczkowe mają mięcej "mocy" niż 4 tłoczkowe

 

najlepiej dorwać z usa legacy gt 316mm tarcze i zaciski. wchodzą pod oem 17" ale chyba nie 16"- nie jestem pewien

 

cały dokument

 

"**warning** This is a LONG post. A VERY long post. VERY VERY long. I'll CN it at the bottom. If you are a dork, you'll read it all. Data for this thread came from the Subaru Factory Service Manuals and my friend Josh Colombo.

 

Below is all of the information about brake bias setups. For clarification, all we are doing here is assuming a pedal input pressure and then extrapolating data from that. Because we are only concerned with bias, the actual numbers don't have to have any real world significance, only the ratio really matters. That said, we can guess at a few things and still come up with a reasonably realistic bias guide. There are a few unknowns that we are forced to eliminate. Mainly, the proportioning valve split point. Pressure IS split 50/50, however above a certain threshold the prop valve dramatically limits the pressure flowing to the rear lines. Up until that point, bias will be the same no matter the pedal input. After that point, bias will shift forwards. Since I didn't originally design the system, I have no idea what that point is. Still, these calculations will give us a general idea of how the brakes will feel when paired with different front brake setups. The calculations aren't difficult, just tedious. To cut back on this, we will keep a few things constant. Master cylinder size, brake pad coefficient of friction, and pedal pressure. Keeping these constant will make some bits of the equation constant and save time. When looking at the numbers, there is such a thing as too much rear brake. It's like riding a bicycle. Too much rear brake and the rears lock up and you don't stop nearly as well as you could. Too much front brake and you lose rear wheel traction putting even more stress on the front brakes. The ideal bias is tough to determine and varies for everyone. To get an idea of what you MIGHT like, you could go ride a bicycle and experiment with lever force. Ideally you'll have enough rear bias to not lock the rear tires, but not so much front bias that you dive excessively. This ties a significant amount into suspension setup, tire choice, and alignment settings. All of these things will impact the "right" brake bias for you. Really soft suspension and a front biased setup will make the rear brakes inefficient. Really stiff suspension and not enough front bias, and you'll overload the rear tires and make trail braking difficult. It's kind of a slippery slope and the best thing you can do is look at the stock numbers and then think to yourself how you might like to change it. If you are unhappy with stock, and would really like more rearward bias, then go that way and judge the amount of bias you'd like.

 

Brakes are a system. You have your pedal input and the associated pressure applied to the master cylinder. The master cylinder applied force across an area giving you some line pressure. The pressure in the lines and the area of the piston give you some force output. The friction between the pad and the rotor with the force applied and the distance from the center of the pad to the center of the hub all compile to produce torque. The actual torque applied to the hubs is not the focus of this discussion. This post is all about ratios. The ratio of front to rear torque, and to some extent, the ratio of one setups brake torque to another. Since we are keeping so much constant, we can assume that if one system produces X brake torque, and another produces 1.25X brake torque, then the latter is proportionally "stronger" by that amount. I wouldn't expect numbers that large. Also, one thing that we will choose to ignore is tire coefficient of friction and its relationship to stopping the vehicle. This gets into mathematical models far beyond the scope of this thread. Since this is a brake comparison and not a tire comparison, the figures to calculate theoretical stopping distances would be constant and directly proportional to brake torque within reason (it's possible that the torque produced at our theoretical pedal pressure is beyond the torque required to stop the vehicle).

 

So let's begin by laying the ground rules. We need to assume our constants.

 

Unfortunately, I don't have access to my FSM right now so I don't exactly know the stock MC size. I seem to recall it being 1.00" since I KNOW it's not the 1.0625" STi size and I doubt it's the 0.9375 of the LGT. That's important. Right away, we encounter our first tidbit. Larger MC's mean greater pedal pressure required for the same line pressure. So if you feel like your brakes have to light of pedal pressure, a bigger MC is for you.

 

We also need to assume a few other things. Mainly piston travel for sliding calipers (.025"), and roll back. These will be constant, since in reality I think they are. We won't get into caliper flex and such, because they aren't necessarily important.

 

Now we need the following brake data for each of our interests; effective disc diameter, piston area, and number of pistons.

 

This is where it gets complicated. A fixed caliper has all pads pushing with the same pressure. A fixed caliper has the same pressure for each piston. A sliding caliper, however, applies the pressure from the piston twice (once on each side of the pad). So a 2-piston sliding caliper effectively applies the force from 2 pistons on each side, making it have twice the area. Confused? The pistons in a sliding caliper push the pad into the rotor. When the pad contacts the rotor, the caliper pulls the outboard pads into the rotor. Negating caliper flex, it pulls the outboard pad into the rotor with exactly the same force as it pushes the inboard pad to the rotor. We COULD simply ignore half of the fixed caliper pistons and focus on half of the braking system, or we could multiply the sliding piston calipers by two. Doesn't really matter. Let's do the latter because it makes for more easily handled numbers. This is funny. A sliding caliper actually acts like it has twice its actual piston area. Funny to think, huh? That a fixed caliper and a sliding caliper can have exactly the same effective piston area. No wonder the M3 has never come with monoblock calipers!

 

Also, outside diameter does not impact brake torque. On the contrary, effective diameter is what matters. The effective diameter is provided in the FSM. It is the average diameter of pad swept area. If you look at the swept area of a rotor, the smaller diameter of the inside and the larger diameter of the outside would produce different torques at each point. The effective diameter can be thought of by the average of these two points, and as such is slightly higher than the center point of the swept area. Funky, I know. But the FSM provides this, so it doesn't REALLY matter how they got it. It is also not rotor specific, but has to do with the pad shape as well. The FSM provides it, so we go with what they give. We will only make one assumption, and that is the effective diameter of the RB 316x18 rear rotors. We will assume that they have the same effective diameter as the STi rotors. It won't change much if they are slightly different.

 

Another thing to consider is pad compound. There are a bunch of different compounds. Standard pad coefficient of friction ranges from 0.38 to 0.40. Performance street pads range from 0.45 to .050. Race pads range from 0.60 to 0.65. We'll use performance street pads because that's what most of us will run. We'll simply average the values and use 0.475.

 

The last thing to consider (I promise) is the brake booster. There is some data out there, but we will make some generalizations. Accurate or not, it would give us a good range for where our line pressure should lie. We'll basically ignore this and just make an assumption for the pressure applied to the rear of the MC. We'll call it 100 pounds to try and keep numbers as manageable as possible.

 

OK, I think we've gone over everything. Now let's do some math!

 

We'll start with stock FXT brakes. They are easy and give a good base line. I'll only do the front end calculations once and then just post the numbers for the other setups. I'll post the data though, incase anyone wants to double check my math. I'll show the steps as well so that you can play with different MC sizes if you so desire.

 

Data needed:

 

FXT front brakes-

Outer Disc Diameter - 11.57" (294mm)

Effective Disc Diameter - 9.72" (247mm)

Caliper piston diameter - 1.685" x2

Caliper piston area - 4.460sq.in

Effective caliper piston area - 8.915sq.in

 

FXT rear brakes-

Outer Disc Diameter - 10.47" (266mm)

Effective Disc Diameter - 9.06" (230mm)

Caliper piston diameter - 1.5" x1

Caliper piston area - 1.767"

Effective caliper piston area - 3.5325sq.in

 

The 1" master cylinder has a surface area of 0.785.

 

So we start by finding line pressure. 100lbs of input force divided by the surface area will give us line pressure.

 

100pounds/.0785sq.in = 127.3885 psi (so much for keeping simple numbers).

 

With this, we are armed with our first constant. Line pressure = 127.3885psi. Yay!

 

Now areas from above. Pressure times area.

 

Front: 127.3885psi * 8.915sq.in = 1135.69lbs of clamping force on the front rotors

Rear: 127.3885psi * 3.5325sq.in = 450lbs of clamping force on the rear rotors.

 

Good! Now we can figure out torque, and from that bias information.

 

What we need to do is this:

 

Fluid pressure * effective diameter of the disc * coefficient of friction * Effective piston area.

 

Front: 127.3885psi*9.75in*0.475*8.915sq.in = 5259.664313lb-in of force

Rear: 127.3885psi*9.06in*0.475*3.5325sq.in = 1936.575 lb-in of force

 

Now, we find the ratios.

 

5259.664313/(5259.664313+1936.575) = .730891 Front and 1-.730891 rear

 

That means a stock FXT has 73% of its braking force up front and 27% in the back. Good!

 

Easy, huh?

 

So, fluid pressure is the same for all setups as is the coefficient of friction. So we can combine these into one constant term we will call M. 127.3885*0.475 = 60.5095

 

Now, to find torque we just multiply piston area times effective diameter times M.

 

So here's the info we need.

 

Legacy GT

 

LGT front brakes -

Outer Disc Diameter - 12.44" (316mm)

Effective Disc Diameter - 10.28" (261mm)

Caliper piston diameter - 1.685" x2

Caliper piston area - 4.460sq.in

Effective caliper piston area - 8.915sq.in

 

LGT rear brakes-

Outer Disc Diameter - 11.42" (290mm)

Effective Disc Diameter - 10.00" (254mm)

Caliper piston diameter - 1.5" x1

Caliper piston area - 1.767"

Effective caliper piston area - 3.5325sq.in

 

Torques -

 

Front: M*10.28*8.915 = 5545.469176

Rear: M*10.00*3.5325 = 2137.499412

 

Bias is 72.1787303% front and 27.8212697% rear

 

Notes: That was easy because of piston diameters being the same between the LGT and the FXT.

 

4-pots/2-pots

 

Subaru 4-pots -

Outer Disc Diameter - 11.57" (294mm)

Effective Disc Diameter - 10.04" (255mm)

Caliper piston diameter - 1.591" x4

Caliper piston area - 7.9482sq.in

 

Subaru 2-pot rear brakes-

Outer Disc Diameter - 11.42" (290mm)

Effective Disc Diameter - 10.00" (254mm)

Caliper piston diameter - 1.5" x2

Caliper piston area - 3.5325sq.in

 

Torques -

 

Front: M*10.04*7.9482 = 4828.670308

Rear: M*10.00*3.5325 = 2137.499412

 

Bias is 69.3160015% front and 30.6839985% rear

 

Notes: The rear pistons are the same size as the 1-piston rear brakes of the LGT. Effectively, the 4-pots provide LESS clamping force than the 2-piston brakes. This shifts the bias rearward which is why people see braking advantages from the 4-pots. Stiffer calipers and more rearward bias. Ultimate front brake torque is actually less with the 4-pots than with the stock FXT brakes.

 

Brembo

 

Front Brembos -

Outer Disc Diameter - 12.83" (326mm)

Effective Disc Diameter - 10.55" (268mm)

Caliper piston diameter - 1.575" x2 and 1.811" x2

Caliper piston area - 9.043743.in

 

Rear Brembos-

Outer Disc Diameter - 12.44" (316mm)

Effective Disc Diameter - 10.55" (268mm)

Caliper piston diameter - 1.417" x2

Caliper piston area - 3.15238573sq.in

 

Torques -

 

Front: M*10.55*9.043743 = 5773.305191

Rear: M*10.55*3.15238573 = 2012.406197

 

Bias is 74.1525713% front and 25.8474287% rear

 

Notes: This is a perfect example of two different outer diameters with the same effective diameters. The STi front caliper is tricky because of the different piston sizes. Still, it works out well and the bias is pretty good.

 

OK, so that's it for stock calculations. We have:

 

Stock FXT -

Front = 73% Rear = 27%

 

Stock LGT -

Front = 72% Rear = 28%

 

Stock 4/2 pot -

Front = 69% Rear = 31%

 

Stock Brembo -

Front = 74% Rear = 26%

 

Now, the calculations for the rear brake torque numbers of the RB big brakes

 

290x18mm BBK:

Outer Disc Diameter - 11.42" (290mm)

Effective Disc Diameter - 10.00" (254mm)

Caliper piston diameter - 1.5" x1

Caliper piston area - 1.767"

Effective caliper piston area - 3.5325sq.in

 

Rear torque: M*10.00*3.5325 = 2137.499412

 

Notes: Same as LGT rears! In fact, this is the same effective brake torque as the standard 'H6' upgrade. The benefit you have is vented rears over solid rears, allowing for a greater heat holding capacity and better cooling.

 

316x18mm BBK:

Outer Disc Diameter - 12.44" (316mm)

Effective Disc Diameter - 10.55" (268mm)

Caliper piston diameter - 1.5" x1

Caliper piston area - 1.767"

Effective caliper piston area - 3.5325sq.in

 

Rear torque: M*10.55*3.5325 = 2255.06188

 

Notes: Effectively an LGT caliper with STi rotors.

 

Now, bias calculations with the various RB kits:

 

FXT w/ 290x18 rear kit:

Front: M*9.75*8.915 = 5259.664313

Rear: M*10.00*3.5325 = 2137.499412

 

Bias is 71.1037918% front and 28.8962082% rear

 

FXT w/ 316x18 rear kit:

Front: M*9.75*8.915 = 5259.664313

Rear: M*10.55*3.5325 = 2255.06188

 

Bias is 69.9914241% front and 30.0085759% rear

 

LGT w/ 316x18 rear kit:

Front: M*10.28*8.915 = 5545.469176

Rear: M*10.55*3.5325 = 2255.06188

 

Bias is 71.0909185% front and 28.9090815% rear

 

4-pot w/ 290x18 rear kit:

Front: M*10.04*7.9482 = 4828.670308

Rear: M*10.00*3.5325 = 2137.499412

 

Bias is 69.31600% front and 30.683998% rear

 

4-pot w/ 316x18 rear kit:

Front: M*10.04*7.9482 = 4828.670308

Rear: M*10.55*3.5325 = 2255.06188

 

Bias is 68.16562% front and 31.8343751% rear

 

Brembo w/ 290x18 rear kit:

Front: M*10.55*9.043743 = 5773.305191

Rear: M*10.00*3.5325 = 2137.499412

 

Bias is 72.979999895% front and 27.0200001% rear

 

Brembo w/ 316x18 rear kit:

Front: M*10.55*9.043743 = 5773.305191

Rear: M*10.55*3.5325 = 2255.06188

 

Bias is 71.91132567% front and 28.0886743226% rear

 

So, that about covers it.

 

We just did calculations for Stock: FXT, LGT, STi, 4/2-pots

 

We also did the 290x18 with stock: FXT, STi, 4-pots

 

We also did the 316x18 with stock: FXT, LGT, STi, 4-pots

 

All of these combinations put you fairly close with an ideal 70/30 split and any of them would work really well.

 

One thing I would consider when choosing is your style of driving and your suspension setup. If your car is stiffly sprung and you don't mind the tail stepping out a little, then the 316 rears would likely be ideal. More rear bias will take advantage of your suspension and you'll notice far less dive.

 

I'd say for most people with stock front brakes, the 290x18 kit would work out really well.

 

For those with 4-pots, it's a tough draw.

 

Brembo's should definitely get the 316x18 kit.

 

LGT fronts, I'd go with the 316x18 rear kit.

 

Also note, RB DOES have a 316mm front brake upgrade for the WRX/FXT which will then turn your numbers into those for the LGT w/ 316 rears.

 

I hope this has been informative and has helped you make a decision. If you have any questions, please let me know and I'll do my best to answer them.

 

Also, I'll ask to confirm the effective disc diameter on the RB 316x18mm rotors. I'll correct this post if I find that EDD to be different than the STi rotor.

"

Link to comment
Share on other sites

Fajny materiał, mam deja vu, już to Adam gdzieś "pisałeś" :D

najistotniejsze z tego jest podsumowanie:

lepiej mieć tarczę 316 mm i 2 tłoczki, niż 294 mm tarczę i 4 tłoczki... tyle zrozumiałem :D

 

Podsumowując częsty dylemat dot. przednich hamulców:

Forester US: 294/2 tłoczki -> 5259 lb-in of force

GT/WRX: 294/4 tłoczki -> 4828 lb-in of force

Legacy GT: 316/2 tłoczki -> 5545 lb-in of force

Brembos: 326/4 tłoczki -> 5773 lb-in of force

 

Tyle mówią liczby...

czyli zmieniłem z lepszych na gorsze :twisted: ale przynajmniej ładniej wyglądają :lol:

Link to comment
Share on other sites

(...) Tyle mówią liczby...

czyli zmieniłem z lepszych na gorsze :twisted: ale przynajmniej ładniej wyglądają :lol:

liczby mowia jedno, a dupsko (przynajmniej moje :mrgreen: ) - co innego...

 

u mnie po zamianie na 4-tloczki hamulec lepiej sie sprawuje... choc u mnie to byl kompletny upgrade: 4-tloczkowe zaciski + lepsze klocki i plyn...

 

warto tez pamietac, ze przejscie na 4-tloczki daje wiekszy wybor sensownych klockow

Link to comment
Share on other sites

tył przy 4-2 pot jest silniejszy. Może dlatego jest lepiej. Albo lepszy klocek i tarcza niż ta wersja OEM

 

nie doczytałem się na forum jaki setup hamuje lepiej od OEM. Kiedyś zawsze mówili brembo plus ferodo ale nie wiem czy to prawda a jeżeli tak to jaki model brembo i jaki model ferodo do cywilnej jazdy, tak aby auto brutalnie hamowało jak np. renault, nissan, fiat...

 

hamulce w subaru zupełnie inaczej biorą. tutaj trzeba "nacisnąć z użyciem siły aby hamować" a tam hamulec wchodzi jak w masło dzięki temu w moje ocenie nie trzeba się tak koncentrować na sile hamowania.

 

p.s

tak kiedyś to wklejałem. Jak nic tani i dobry upgarde to 316mm z legacy gt. Nie mam pojęcia niby dlaczego nie wchodzą na 16" Moje obecne mają sporo luzu do 16" felgi. Być może zacisk jest "grubszy"

 

jak będę w aso zapytam czy maja jakąś 316mm na "szrocie" aby pomierzyć co i jak przeszkadza.

Link to comment
Share on other sites

aby auto brutalnie hamowało jak np. renault, nissan, fiat...

Może w ww. markach po prostu jest lepsze wspomaganie hamulców.

W subaru też można zblokować koła, nawet na asfalcie, więc hamulce są raczej ok :) tylko charakterystyka inna.

Link to comment
Share on other sites

Ja założyłem 4 tłoczkowe żółte brembo do tego tarcze chyba od citroena (- ok 305 mm w bardzo dobrej cenie) oraz klocki ferodo ds2500 - hamowało troszkę lepiej niz seria, potem wrzuciłem tarcze też chyba citroenowe tylko już ok 315 mm plus dystans żeby weszły pod zaciski oraz redstaffy na tył i jest znacznie lepiej niż seria. Fakt że trzeba mocno wcisnąć aby w pełni mocno chwyciły. Ja akurat wolę aby hamulce nie chwytały strasznie mocno od razu. Ten zestaw nadaje się bez problemu do codziennej jazdy.

pozdr

Link to comment
Share on other sites

na forum ktoś chciał sprzedać 316mm od leacy gt

 

tyle, ze nie whodzą pod 16" nie wiem czy Ty używasz 16" jeżeli nie to mogła by to być niezła opcja

 

1500 papierów za set tarcze, klocki i zaciski z małym przebiegiem. Uważam, że to dobra cena.

 

ozdrawiam

Link to comment
Share on other sites

czesc,

z moich doswiadczen (obecnie brembo, ferodo, weze w oplocie, plyn castrol), tak bym ustawil priorytety:

 

1. Srednica tarczy

2. Dobre klocki

3. Dobry plyn

4. Weze

5. Ilosc tloczkow

 

zacisk musi byc po prostu odpowiedni do klocka i tarczy.

 

Moim zdaniem wielkosc tarczy i rodzaj klocka ma najbardziej bezposrednie przelozenie na droge hamowania (oczywiscie porownujac dla takiego samego zawiasu i opon), zacisk, plyn i przewody na czucie hamulca i jego reakcje. Dodatkowo kiepski plyn jest podatny na zagrzanie - u mnie, na seryjnym, bardzo szybko grzal sie hamulec. Ogolnie brembo dobrze hamuja, w tym setupie ktory mam teraz jest naprawde bardzo fajnie. Mialem klopot z przegrzewaniem tarczy i dziwnym zachowaniem pedalu, wymiana plynu i oplot to rozwiazal.

 

Dodatkowo kwestia ABSu, zawieszenia, kol itp.

 

Pisze na ten temat, bo wlasnie dzis po raz drugi hamulec uratowal mi zycie - pan w L200 postanowil mnie staranowac na autostradzie.

 

pozdrawiam,

 

Piotr

Link to comment
Share on other sites

jakbym nie miał świeżych tarcz i klocków przycisnąłbym gościa, który sprzedaje 6 tłokowe 355mm od porszaka, ale po prostu mi się nie opłaca

 

burzum, dobrze pamiętam, że AGXy zdemontowałeś?

Link to comment
Share on other sites

nie nie, mam caly czas AGXy (ustawione na 4/4), troche gum whiteline, staby 22mm, kola 225/45R17, 235/45R17 lub 245/45R17.

 

Drugi komplet agxow mam w garazu, jakby co :)

 

Teraz chcialbym popracowac nad wahaczami.

 

Z forkiem nie ma co szalec, to nie jest rajdowka i nigdy nia nie bedzie. Moj ma 215KM :)

Link to comment
Share on other sites

 

Pisze na ten temat, bo wlasnie dzis po raz drugi hamulec uratowal mi zycie - pan w L200 postanowil mnie staranowac na autostradzie.

 

pozdrawiam,

 

Piotr

 

i to jest najważniejsze zadanie hamulców, w razie czego totalny hebel, kotwica, itp.

 

dobrze, że nic Ci się nie stało.

 

p.s.

 

przydały by się granaty w schowku w ramach szybkiej zemsty :mrgreen:

Link to comment
Share on other sites

wlasciwie to nawet nie bylem zly na goscia, wyminalem potem i nawet nie spojrzalem. Jakbym go zobaczyl, pewnie bym cos pokazal.

Gorzej, ze jechalem na tempomacie, z noga "za uchem". Hamulec znalazlem za trzecim kopnieciem. To byl koszmar, gosc we mnie wjezdza, a ja nie moge zahamowac. Nigdy wiecej nie bede zdejmowal nogi z gazu. A lewa awaryjnie nie hamuje... Dlatego do mojej listy z poprzednich postow dodam takze "umiejetnosc i automatyka hamowania" - i to na pierwszym miejscu :)

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...